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We report on theoretical studies of molecularly thin Langmuir films on the surface of
a quiescent subfluid and qualitatively compare the results to both new and previous
experiments. The film covers the entire fluid surface, but domains of different phases
are observed. In the absence of external forcing, the compact domains tend to relax
to circles, driven by a line tension at the phase boundaries. When stretched (by a
transient applied stagnation-point flow or by stirring), a compact domain elongates,
creating a bola consisting of two roughly circular reservoirs connected by a thin
tether. This shape will then relax slowly to the minimum-energy configuration of
a circular domain. The tether is never observed to rupture, even when it is more
than a hundred times as long as it is wide. We model these experiments by taking
previous descriptions of the full hydrodynamics, identifying the dominant effects via
dimensional analysis, and reducing the system to a more tractable form. The result
is a free boundary problem for an inviscid Langmuir film whose motion is driven
by the line tension of the domain and damped by the viscosity of the subfluid.
Using this model we derive relaxation rates for perturbations of a uniform strip
and a circular patch. We also derive a boundary integral formulation which allows
an efficient numerical solution of the problem. Numerically this model replicates
the formation of a bola and the subsequent relaxation observed in the experiments.
Finally, we suggest physical properties of the system (such as line tension) that can be
deduced by comparison of the theory and numerical simulations to the experiment.
Two movies are available with the online version of the paper.

1. Introduction
In this paper we develop a manageable model of the experimentally observed

relaxation dynamics of a molecularly thin film with two fluid phases at an air/water
interface. Our model refines previous work and is motivated by experimental
observations. It is both analytically tractable and allows an efficient, accurate and
stable numerical solution via a boundary integral technique. The model explains some
observed experimental phenomena and in particular offers a more general method
for measuring the line tension of the film. We neglect long-range electrostatic effects,
which could be added in a straightforward manner at a later time, as well as viscosity
and compressibility within the film. These approximations are reasonable for a wide
but not universal range of experimental conditions, as discussed below.
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Figure 1. A series of Brewster Angle Microscopy photos showing a bola relaxing to a circular
Langmuir domain. The brighter domains consist of about five layers of 8CB, while the dark
background consists of three layers of 8CB (de Mul & Mann Jr 1998; Zou et al. 2006). A
shear field was established which distorted the domain to a bola with a thin tether. The shear
field was then shut off and the domain allowed to relax as shown in the series of images. The
time interval is 0.5 s. A short (8 s) movie of a Langmuir film being perturbed by stirring the
subfluid and the resulting relaxation is available with the online version of the paper. The
scale bar in the right frame spans 0.2 mm.

1.1. Langmuir films and line tension

A Langmuir film is a molecularly thin layer bound at a fluid/gas interface so that
the layer molecules do not escape into either fluid. Typically the fluid is water (or
an aqueous solution) and the gas air. A balance of molecular interaction forces
between the layer molecules, with each other and with the subfluid, leads to this
molecularly thin layer. Depending on the surface density, the film may form quasi-
two-dimensional analogues of a gas, liquid, liquid-crystal, solid, or other phases
(Gaines Jr 1966). Multilayers of different thickness generate yet further possible
phases. A thermodynamic equation of state for the Langmuir layer relates the surface
pressure Π and the surface density ρ. As in the three-dimensional case, the film
phases can separate at intermediate average densities, into surface liquids with two
different thicknesses. These phases form a distribution of separate domains at the
surface. The phase coexistence region has drawn considerable experimental attention
due to the wide variety of morphologies (Adamson & Gast 1998) and dynamical
behaviour that are potentially observable over a wide range of domain sizes from
the nano- to the micro-scale. There is also a growing recognition of the functional
importance of domains in biological cell membranes (Simons & Ikonen 1997; Edidin
2003; Mayor & Rao 2004; Parton & Hancock 2004) for which Langmuir films can
be a controlled model. As a film is compressed, domains of different thicknesses or
composition acting as coexisting two-dimensional phases may appear.

This paper focuses on the case where there are two such co-existing liquid
phase domains, which is particularly applicable to multilayer systems or to mixed
monolayers, such as those found in biological membrane analogues. Note that bilayers
and multilayers are explicitly included. The only assumption is that the set of layers is
thin enough that the whole set can be considered to move together, and in particular
that there is no slippage between layers. Such slippage is unlikely in an ordinary
fluid layer. In three dimensions, slippage is perhaps seen in entangled polymers or in
complex fluids.

Figure 1 shows a time-lapse set of Brewster Angle Microscopy (BAM) images that
demonstrate the large aspect ratio of the typical bola that results from shearing a
cyano-biphenyl liquid-crystal (8CB) Langmuir layer and its subsequent relaxation to
a circular domain. Amazingly, these bola may be sheared to be several orders of
magnitude longer than they are wide yet do not rupture. It is the physics behind this
observation that we wish to model, explain and quantify

Figure 2 shows a cartoon of the cyano-biphenyl liquid crystal (8CB) studied
by de Mul & Mann Jr (1998) that provides a guide in developing our theory of
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Figure 2. (a) An edge-on view of one set of two-dimensional fluid phases: an 8CB monolayer
in coexistence with an 8CB trilayer. 8CB is a cyano-biphenyl molecule that forms a smectic
(layered) liquid crystal at room temperature in bulk. (b) A top view of such a layer, defining
the domain Ω , the boundary ∂Ω , the outer monolayer Ωc and the normal n̂. See de Mul &
Mann Jr (1998).

domain behaviour. We assume that one phase is a localized domain, Ω , and that its
complement, Ωc, is a second phase which extends to infinity. The domain boundary
∂Ω will be parameterized by arclength s with a right-handed orientation and with an
outward pointing normal n̂.

Both phases behave as two-dimensional fluids. Each fluid can be characterized by
a set of visco-elastic parameters, in direct analogy with the three-dimensional case
(Goodrich 1981; Gaines Jr 1966; Mann Jr 1985; Mann Jr, Crouser & Meyer 2001).
The net attraction between film molecules, in the neighbourhood of the interface,
leads to a line tension, or energy per unit length, λ, associated with the boundary
between domains. Lateral intermolecular forces include short-range van der Waals
forces, but also long-range dipolar repulsion due to the alignment of the effective
molecular dipole moments by the interface.

Above a critical size Rc, given as

Rc =
δ

8
exp

[
2πλ

ε0 (�V )2
+

10

3

]
(1.1)

where δ is a characteristic molecular length, λ is the line tension, ε0 is the vacuum
dielectric constant, and �V is the contrast in surface potential between the two
phases, the long-range electrostatic forces will distort domains from the circular shape
(DeKoker & McConnell 1993; Mann, Hénon & Langevin 1992). At dimensions much
smaller than Rc, the major effect of the long-range forces is to renormalize the line
tension as

λeff = λ − µ2

(
ln

L∗

Lm

+ Is

)
,

where µ is the effective dipole moment density difference, given in terms of the
measured surface potential contrast as µ2 = ε0/2π(�V )2, L∗ is a typical domain
length scale, Lm is some molecular scale (often taken to be the thickness of the layer
or the average distance between molecules in the layer), and Is is a term depending
only on shape (generally negligibly small until the λeff approaches zero). Since the
main correction to the line tension is logarithmic the line tension can often be taken as
a constant over a large range of length scales. The long-range dipolar repulsion may
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still lead to repulsion between domains, and plausibly may help stabilize metastable
states such as Langmuir foams (Mann et al. 1992). Between them, the line tension
and the electrostatic effects determine both the equilibrium and dynamic behaviour of
the domains. In particular, both the characteristic size and shape of the domains will
depend on these factors. The electrostatic effects can be determined experimentally
by measuring the surface potential, or the drop in voltage across the interface, due to
the alignment of molecular dipoles (Mann 1992; Mann et al. 1992). Determining the
line tension has been more difficult, and relatively few examples exist in the literature.

1.2. Previous results, experiments, and background

The existence of a line tension means that small isolated domains are round in
equilibrium, and also that deformed domains relax to this shape, as can be seen in
figure 1. In order to deform the domain, a shear is applied to the underlying liquid,
and then removed. Typically highly deformed states look like bola, with a tether
connecting two nearly circular ends which approach each other with a speed which
depends on the line tension and the viscosity of both the Langmuir film and the
underlying fluid. As the two ends approach each other closely, the tether thickens and
eventually disappears as the domain relaxes finally towards a circle.

1.2.1. Line tension

Benvegnu & McConnell (1992) estimated the line tension in a mixed monolayer
from the speed of approach of the two bola ends, using a simple hydrodynamic
approximation assuming a negligible surface viscosity and circular bola with no
flow at the interior, using the results of Hughes, Pailthorpe & White (1981) for a
solid cylinder moving through a membrane. Once the domain shape had become
convex, the relaxation was found to be exponential (cf. Mann et al. 1992, 1995), as
is expected in the small deformation limit. The line tension for different systems was
deduced from this relaxation by Mann et al. (1992), Mann et al. (1995) and Lauger
et al. (1996) using a hydrodynamic approximation developed by Stone & McConnell
(1995). Results were consistent with line tension deduced from the bola velocities.
Similarly, line tension estimates were obtained from the coalescence, and subsequent
relaxation, of two domains (Mann et al. 1992; Steffen, Wurlitzer & Fischer 2001). In
other experiments, the domains were instead deformed directly using silica beads at
the domain edges as handles for optical tweezers (Wurlitzer, Steffen & Fischer 2000a;
Wurlitzer et al. 2000b).

Mathematical models of a Langmuir film as a viscous two-dimensional fluid on a
viscous three-dimensional subfluid were developed by Stone & McConnell (1995) and
Lubensky & Goldstein (1996). These models assumed that the surface layer is infinite
and of constant viscosity, with the domain advected by the surface flow and a force
applied via the line tension. Specifically, Stone & McConnell (1995) included strong
electrostatic repulsion, and found growth rates for small deformations, for any ratio
between the surface and volume viscosities. From their results, relaxation rates for the
case where line tension dominates electrostatic repulsion can be deduced. Lubensky &
Goldstein (1996) developed a Green’s function approach, again assuming that the
surface viscosity is a constant across the entire Langmuir layer. While both these
calculations allowed for a finite-depth subfluid, under experimental conditions the
subfluid is usually much deeper than the size of the domains, and we will assume that
it is effectively infinitely deep.

A major goal of this work is to develop a theoretical framework to determine
the experimental line tension between two fluid phases. Direct measurements of
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the relaxation time for perturbations from a circular domain as a function of
volume viscosity (Mann et al. 1995) for a polymer monolayer (polydimethylsiloxane,
PDMS) on water demonstrated that relaxation can be dominated by viscosity in
the subfluid and allowed estimation of the line tension. However, the regime of very
small deformations is experimentally difficult to access. Ideally, the whole range of
relaxation behaviour could be used in the line tension determination.

1.2.2. Tethers

A further motivation for our research concerns the tether, that is, the long thin line
of fluid between the two rounded ends of a bolus. Tethers are inherently unstable in
pure three-dimensional fluids because of the Rayleigh instability (cf. Drazin & Reid
2004); varicose (peristaltic) mode fluctuations decrease the surface area, and thus the
energy of the system. Such tethers may nevertheless play important roles in fluid
membranes, such as in biological cells, where they may be stabilized by the elastic
properties of the membranes as was shown by Powers, Huber & Goldstein (1990).

For a two-dimensional tether, the stability question is much more subtle; one natural
analogy is with an idealized thin fluid soap film, which is linearly stable to capillary
forces, as small perturbations now increase the surface area (cf. Drazin & Reid 2004).
However in a real soap film a variety of surface effects must be included to fully
capture the dynamics. For example, the viscoelastic response of the surfactant layers
bounding the film can slow draining of the film under gravity. Static considerations,
such as the competing effects of electrostatic repulsion and van der Waals attraction
between the two surfaces of the film, can also affect whether the film ruptures. The ana-
lysis of thin lines of two-dimensional fluid in monolayers (Lucassen, Akamatsu &
Rondelez 1991) has suggested the need for a ‘surfactant’ that adsorbs on the
boundaries of the thin line or tether. Brochard-Wyart (1990) on the other hand
suggests that van der Waals attraction is sufficiently small that the characteristic
‘soap film’ peristaltic instability would develop only over very long times.

By direct experimental comparison, Mann & Primak (1999) demonstrated that the
two-dimensional soap film is much less stable in the absence of direct electrostatic
dipolar repulsion, owing to the alignment of molecular dipoles. While this work
suggests that one way to stabilize a tether is to incorporate dipolar repulsive forces
between the interfaces, our model suggests that a tether can be stable in the absence
of these forces.

Whereas the soap film provides one analogue for the stability of a tether, a
sharply contrasting one is the nearly two-dimensional flow of the Hele-Shaw problem
(Almgren 1996; Glasner 2003), a mathematical model for the evolution of a viscous
fluid droplet sandwiched in a narrow gap between two plates. It is known that this
flow also evolves to minimize the perimeter of the bubble, so modestly deformed
domains relax to being circular. However, it is known numerically and asymptotically
that an initially long narrow bubble will first relax into a bola configuration with a
narrow neck forming between the circular reservoir and the tether (see Glasner 2003).
This neck will eventually pinch off (Almgren 1996; Almgren, Bertozzi & Brenner
1996; Constantin et al. 1993; Dupont et al. 1993; Glasner 2003; Goldstein, Pesci &
Shelley 1993) in a finite time, leading naturally to the question of why the dynamics
of Langmuir layers are different. This question is explored herein.

1.3. A free boundary formulation

Another goal of our analysis is to reduce the equations of motion for the Langmuir
layer and the subfluid to a simpler description for the evolution of the boundary
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of the domain. Our dimensional analysis below will indicated that the pressure
in the Langmuir layer is in a hydrostatic balance while the subfluid is Stokesian.
Consequently, the whole system is quasi-steady; that is the velocity of the subfluid
and the Langmuir layer can be determined solely in terms of the instantaneous
location of the domain boundary. Moreover, this response is linear. Consequently,
the evolution of the boundary can be described by a boundary integral formulation
(Pozrikidis 1992); that is the boundary’s velocity at each point can be determined
as a convolution integral over the boundary. Once again, this is analogous to the
Hele-Shaw problem, which allows a similar formulation (e.g. Tryggvason & Aref
1983). Previously a boundary integral formulation for the Langmuir layer (including
electrostatic forces) had been proposed by Lubensky & Goldstein (1996) and an
analogous version was implemented by Heinig, Helseth & Fischer (2004), who were
able to qualitatively reproduce many experimental results, although their scheme
exhibits modest area loss. We use a different formulation of the free boundary problem
which lends itself to a more accurate numerical implementation. Both the Hele-Shaw
problem and our description of the Langmuir layer are driven by curvature, which
leads to numerical stiffness; we address this problem using a semi-implicit pseudo-
spectral method developed by Hou, Lowengrub & Shelley (1994) for Hele-Shaw
flow. This formulation allows simulation of the stretching, formation and subsequent
relaxation of a bola in a Langmuir layer. We are able to simulate relaxation of tethers
with aspect ratios of over 100-to-1 with good control of error.

1.4. Outline of the paper

Experimentally, Langmuir layers often separate into different phases on the surface
of the fluid. In § 2, we develop a model for a Langmuir layer consisting of two
fluid phases. We call such regions Langmuir layer domains and concentrate on one
such domain, Ω , and its complement, Ωc, which is assumed to be a different phase.
We model these domains as incompressible inviscid two-dimensional Newtonian
fluids. We also assume that the line-tension λ along the boundary of Ω is constant.
Dimensional analysis of our experiments suggests that, at leading order, the subfluid
is Stokesian and the Langmuir layer is inviscid. Hence we call the model the inviscid
Langmuir layer Stokesian subfluid (ILLSS) model. Basically the line tension drives the
motion, which is damped by the viscosity of the subfluid, dissipating the energy. Our
dimensional analysis also suggests that at leading order the surface of the subfluid,
on which the Langmuir layer lies, is flat, and that the film has negligible thickness.

In the special case when the Langmuir domains have the same surface viscosity, a
solution can be found in which the subfluid has constant pressure and all motion is
in horizontal planes (an ansatz made in the works of Stone & McConnell 1995 and
Lubensky & Goldstein 1996). In this case, we introduce a streamfunction formulation
which greatly simplifies the analysis.

In § 3 we consider the energy balance in the fluid and show that the modelled system
dissipates energy by decreasing the length of the boundary of Ω . This suggests that,
for any initial configuration, Ω relaxes to a circular domain or possibly a collection
of disjoint circular domains.

In § 4 we consider some details of the final stage of the relaxation to a circular
domain via a linear stability analysis. Our analysis reproduces the known results for
relaxation to circular domains in a fairly streamlined fashion.

As a simple model of a long narrow tether, in § 5 we consider linear stability of an
infinite strip. Not surprisingly, we discover that such a strip is linearly stable to both
varicose and sinuous instabilities.
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Parameter Symbol Range of values Comments

Length L∗ 5 µm< L∗< 5 mm Optical microscopy limit
Surface tension σ 10–72 mN m−1 Experimental measurements
Line tension λ �1–20 pN Experimental measurements
Volume viscosity η′ > 10−3 kgm−1 s−1 Water plus additives

Surface viscosity η

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(< 10−8) − 10−1 kg s−1

< 10−8 kg s−1

10−7 kg s−1

10−6 kg s−1

10−3 kg s−1

Experimental results :

− polymer(PDMS)‡

− liquid expanded†

− liquid condensed†

− solid†

Domain thickness ξ 0.5–10 nm Mono- to multi-layers
Volume density ρ ′ 103 kg/m3 Water
Surface density ρ (1 − 20) × 10−6 kgm−2 Mono- to multi-layers

Vertical deformation radius λ/σ

{
� ξ < 10 nm
< 1 nm

Theory
Experiment

Reynolds number Re= ρ ′λ/η′2 � 10−2

Density ratio δρ = ρ/ρ ′L∗ ∼ 10−3

Viscosity ratio δη = η/η′L∗ 10−2−103

Table 1. Physical and non-dimensional parameters for Langmuir layers from theory and
experiment. For references see: †Joly (1972), ‡Mann et al. (1995).

In § 6 we derive a boundary integral formulation of the ILLSS model that allows
an efficient numerical implementation of the nonlinear evolution of a bola. We
show numerically that the stretching of a Langmuir layer domain by a transient
stagnation-point flow leads to the formation of a bola and subsequent relaxation
back to a circular domain, qualitatively reproducing the experimental observations.
Our numerics suggest that existing heuristic theories that deduce line tensions from
tether relaxation rates are accurate to roughly 10%.

Finally, in § 7 we discuss how this model can be used to deduce the line tension
on a Langmuir layer domain by comparing the experiments to the numerical and
analytical results.

2. Formulation
2.1. Dominant balance in the Langmuir layer and subfluid

As the subfluid in the experiment is usually water or some aqueous solution, we assume
its evolution will be governed by the Navier–Stokes equation for an incompressible
fluid characterized by its density, ρ ′, and viscosity, η′. Moreover, following previous
authors, we will also assume that the Langmuir layer can be modelled as a two-
dimensional Newtonian fluid with associated surface density, ρ, and surface viscosity,
η. The two are coupled at the surface by the applied stress balance; the subfluid’s
surface tension acts normal to the surface, the line tension acts tangent to the surface
(and normal to the domain’s boundary), and viscous normal and tangential stresses
can be found in both directions. Table 1 provides a list of physical parameters for our
experiment and their range of values as deduced from both theory and experimental
observation. We justify our approximation with dimensional analysis below.
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2.1.1. Stokesian subfluid

We now propose the ansatz that the relaxation of a polymer domain from, say, a
bola shape to a circular patch is driven by the line tension, λ, of the patch and that
the energy is dissipated by the viscosity, η′, of the subfluid. Since the domain Ω is
incompressible, say with fixed area A∗, we can choose a linear characteristic domain
size, L∗ ∼

√
A∗, and non-dimensionalize the problem based on a characteristic length,

time and mass,

L∗, T∗ =
η′(L∗)

2

λ
, M∗ = η′L∗T∗ =

(η′)2(L∗)
3

λ
, (2.1)

respectively.
In the bulk of the subfluid, we assume the non-dimensional fluid velocity, u =

uı̂ + vĵ + wk̂, is incompressible

∇ · u = 0, (2.2)

and satisfies the non-dimensional Navier–Stokes equations

Re(ut + u · ∇u) = −∇P + ∇2u, (2.3)

where P is the non-dimensional pressure and the Reynolds number

Re =
ρ ′λ

(η′)2
(2.4)

is assumed to be small; for an aqueous substrate and with a Langmuir-layer line
tension λ < 10−11 N we find Re � 2 × 10−2.

Consequently, the subfluid velocity satisfies the Stokes equations

∇P = ∇2u (2.5)

at leading order.

2.1.2. Normal stress balance on the surface

We next consider the normal stress balance at the surface. If we allow the surface
to deform, we need to balance surface tension, pressure and viscous stresses from
the subfluid, viscous stresses from the Langmuir layer and geometrical contributions
from the deforming interface (Aris 1990; Stone & McConnell 1995). However, we
argue that at leading order the surface remains flat. To estimate the deformation,
we assume that the viscous stresses in the film are smaller than or comparable with
the viscous stresses in the subfluid. Also, the constant atmospheric pressure P0 can
be eliminated by subtracting a constant from the pressure in the fluid. The normal
component of the fluid’s stress tensor (which has contributions from the pressure and
viscosity) will balance the surface tension. With our non-dimensionalization, we find
that at the surface,

normal viscous stress ∼ surface tension,

η′

T∗
∼ σH,

where σ is the surface energy (which may depend upon whether it is inside or outside
the domain) and H is the mean curvature of the surface. We can solve for the
magnitude of the surface curvature,

H ∼ λ

σ (L∗)2
. (2.6)
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For

L∗ � λ/σ (2.7)

we discover that the radius of curvature of the surface is much larger than the typical
domain size; typically λ/σ ≈ 10 nm so we are looking at domains 10–1000 times
larger than this length scale. Consequently, we consider the case of a flat surface with
the subfluid occupying the region z < 0 and the Langmuir layer domain Ω contained
in the x, y coordinate plane, z = 0, as illustrated in figure 2.

2.1.3. Tangential stress balance in the Langmuir layer domain

For a flat surface, the Langmuir layer evolution equations simplify drastically.
Balancing the tangential stresses on the surface yields a force applied by the subfluid
on the domain Ω . The non-dimensional stress tensor for our viscous, incompressible
Newtonian fluid is

T = −P I + ∇u + (∇u)T . (2.8)

The tangential stress at the surface acts as a two-dimensional body force, Fs ,
(specifically, a force per unit area) acting on the Langmuir layer,

Fs = −k̂ · T · (I − k̂k̂) = −[uz ı̂ + vzĵ ]. (2.9)

As noted above, the normal component of stress at the surface is balanced by surface
tension and produces a negligible deformation of the surface. We assume that the
Langmuir layer domain acts like a two-dimensional Newtonian fluid, with this applied
body force.

2.2. The inviscid Langmuir layer

Using the same non-dimensionalization for the Langmuir-layer surface velocity, U =
U ı̂ + V ĵ , and pressure, Π , we see that the velocity field is that of an incompressible
fluid,

∇⊥ · U = 0, (2.10)

where ∇⊥· is the surface divergence. The surface momentum balance yields the two-
dimensional Navier–Stokes equation,

δρRe(U t + (U · ∇⊥)U) = Fs + F� − ∇⊥Π + δη∇⊥
2U, (2.11)

where ∇⊥ is the surface gradient and F� is the force associated with the line tension.
Following Stone & McConnell (1995) and Lubensky & Goldstein (1996), we model
F� as a line force on ∂Ω proportional to the curvature; a specific form is given below.

Assuming a water substrate, we find that

δρ =
ρ

ρ ′L∗
� 10−3

represents the mass ratio of a portion of the Langmuir layer to the fluid in motion
beneath it; consequently, the inertial forces in the Langmuir layer domain are smaller
than those in the subfluid and are neglected. The ratio

δη =
η

η′L∗

represents the ratio of viscous dissipation in the surface to viscous dissipation in the
subfluid; when

L∗ � η

η′
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we can also neglect the viscous dissipation in the film. The viscosity ratio depends
strongly on the Langmuir layer and its phases, as can be seen in table 1. The surface
viscosity has been found experimentally to be negligible for several fluid phases
(Mann et al. 1995; Lauger et al. 1996), most explicitly for a polymer (PDMS) where
the ratio was found to be 
 10 µm. The parameter can also be adjusted to be as
small as desired by increasing the viscosity of the substrate, which is possible with
water/glycerol mixtures (Mann et al. 1995).

Henceforth we assume that inertial effects and viscous dissipation in the Langmuir
layer are subdominant, so the dominant balance is between the surface pressure, the
applied stress from the subfluid, and the line tension. Balancing the forces with the
pressure, we see that

∇⊥Π = Fs + F�, (2.12)

which means the Langmuir layer is in hydrostatic equilibrium.
To describe the line tension we develop an intrinsic coordinate system on the

surface near the boundary of the domain (see figure 2b). Let Γ (s, t) be a position
vector for the boundary of the domain, ∂Ω , parameterized by the arclength s. We
choose a right-handed orientation; that is, moving along ∂Ω counterclockwise with
Ω to the left corresponds to increasing s. Let t̂ be the corresponding tangent vector.
Differentiating with respect to arclength yields d t̂/ds = κ n̂, where n̂ is the outward-
pointing normal vector and κ is the curvature of ∂Ω (negative for convex Ω). We
define the signed distance from ∂Ω along n̂ as d with d < 0 in the interior of Ω and
d > 0 in the exterior (Ωc). For sufficiently small |d|, the contours {(x, y): d(x, y) = d}
are curves equidistant from the original ∂Ω , and coordinates for a neighbourhood of
∂Ω can be given by the pair (s, d). We can now rewrite the position vector to a point
on the surface in terms of (s, d):

R(s, d) = x(s, d)ı̂ + y(s, d)ĵ = Γ (s, t) + d n̂. (2.13)

Now, the line tension force can be written as

F� = κ n̂δ(d), (2.14)

where δ(d) is a measure supported on ∂Ω that is a delta function for any curve
crossing ∂Ω transversally. Thus, if we integrate across the boundary, we find that the
pressure jump

[Π]d=ε
d=−ε = κ (2.15)

is proportional to the curvature, as expected.

2.3. The kinematic condition

To complete the formulation we use the kinematic condition to tie the motion of
the surface to that of the subfluid. As the surface is flat, the vertical velocity at the
surface vanishes,

w(x, y, 0) = 0.

In addition, we assume continuity of the tangential velocity at the surface,

U = U (x, y)ı̂ + V (x, y)ĵ = u(x, y, 0)ı̂ + v(x, y, 0)ĵ . (2.16)

Finally, we also note that the boundary of the domain is advected with the surface
velocity,

DΓ

Dt
= U |∂Ω , (2.17)

where DΓ /Dt is the material derivative of a point on the boundary.
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2.4. The inviscid Langmuir-layer Stokesian subfluid approximation (ILLSS)

Under the assumptions that the Langmuir layer is inviscid and the subfluid is
Stokesian, a complete set of governing equations can be developed. The subfluid
velocity satisfies the Stokes equations

∇ · u = 0, z < 0, (2.18)

∇2u = ∇P, z < 0. (2.19)

In experimental conditions, a Langmuir layer domain, Ω , occupies a small portion of
the surface area of the subfluid. Thus we assume that the subfluid extends infinitely

far in the horizontal r =
√

x2 + y2 and vertical z < 0 directions. If we assume the
domain is finite in extent, the force it applies to the surface is localized and the
response of the subfluid will decay algebraically in r and exponentially in z (see
Stone & McConnell 1995); consequently, we can assume that the velocity u and its
gradients decay uniformly to 0 at ∞:

|u|, |∇u|, |∇2u| → 0 as r2 + z2 → ∞. (2.20)

A second possibility is that the region of interest is embedded in an external flow,
such as a transient straining field. We simplify the problem by assuming that the
external flow, U ext, is irrotational, and uniform in the vertical direction,

U ext = Uext(x, y)ı̂ + Vext(x, y)ĵ , (Vext)x − (Uext)y = 0. (2.21)

In this case, an appropriate boundary condition is that the velocity deviation from
the imposed flow, u − U ext, and its gradients vanish far from the domain boundary.

The tangential surface stress, Fs , and line tension, F�, are in hydrostatic equilibrium
with the surface pressure:

∇⊥Π = Fs + F� (2.22)

= −uz(x, y, 0)ı̂ − vz(x, y, 0)ĵ + κ n̂δ(d). (2.23)

Also, the surface is incompressible:

∇⊥ · U = ux(x, y, 0) + vy(x, y, 0) = 0, (2.24)

which guarantees the area of the domain is conserved. Finally, the kinematic condition
implies that the normal velocity vanishes at the surface:

w(x, y, 0) = 0, (2.25)

and that the boundary of the domain is advected with the surface velocity:

DΓ

Dt
= u|∂Ω . (2.26)

Equations (2.18)–(2.26) completely specify the system.

2.5. Streamfunction formulation for the ILLSS approximation

As noted by both Stone & McConnell (1995) and Lubensky & Goldstein (1996), a
significant simplification can be obtained when motion of the fluid is confined to
horizontal layers; typically this is possible when the Langmuir layer is incompressible
and the viscosities in Ω and Ωc are equal. In the present case, the viscosities are both
zero and the ILLSS model has a solution of this form.
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2.5.1. A horizontal flow solution

We begin by introducing a streamfunction ψext(x, y) for the external flow

U ext = k̂ × ∇⊥ψext = −(ψext)y ı̂ + (ψext)x ĵ . (2.27)

Note that as the external flow is irrotational and two-dimensional, the vertical vorticity
vanishes:

k̂ · ∇ × U ext = ∇2
⊥ψext = 0,

where ∇2
⊥ = ∂2

xx + ∂2
yy is the horizontal Laplacian.

Next, we look for a solution for the velocity deviation of the subfluid of the form

u − U ext = k̂ × ∇⊥ψ = −ψy ı̂ + ψx ĵ , P = P0, (2.28)

where ψ = ψ(x, y, z) is a streamfunction for the motion in horizontal planes. In
this case, we discover that the fluid automatically satisfies incompressibility. Taking

the curl of (2.19) shows that the vertical vorticity k̂ · ∇ × u = −∇2
⊥ψ is harmonic in

three dimensions and consequently the streamfunction ψ satisfies the ‘twice-harmonic’
equation

∇2
⊥(∇2ψ) = 0 (2.29)

in the subfluid.
From the decay of the velocity deviation in the far field, (2.20), we see that ∇2ψ → 0

as r → ∞. Also, we can deduce from the fact that ∇2
⊥(∇2ψ) = 0 (that is that ∇2ψ is

harmonic in each horizontal plane) and Liouville’s Theorem from the analysis of a
complex variable (which states that any harmonic function bounded at infinity must
be constant) that

∇2ψ = f (z) (2.30)

for some function f (z). A gauge transformation, ψ → ψ + g(z) with gzz = f allows
us to find a solution for ψ that is harmonic in three dimensions,

∇2ψ = 0. (2.31)

The decay of the velocity deviation (2.20) implies that |∇ψ | → 0 as r2 + z2 → ∞.
Incompressibility of the fluid (2.18) specifies ∇⊥ · u = 0 in every layer, and at the

surface

0 = −(∇⊥ · u)z = −∇⊥ · uz = ∇⊥ · Fs = ∇2
⊥Π − ∇⊥ · F�. (2.32)

Consequently, the surface pressure Π is determined by

∇2
⊥Π = ∇⊥ · F�, (2.33)

where we also specify that |Π | → 0 far from Ω .

2.5.2. Surface-stress streamfunction

We now introduce a streamfunction for the surface stress,

S(x, y) = ψz(x, y, 0),

so the tangential stress balance equation (2.22) becomes (see equation (2.9))

Fs = −uz ı̂ − vzĵ = −ψyz ı̂ + ψxzĵ = −k̂ × ∇ψz = −k̂ × ∇S, (2.34)

so that

−k̂ × ∇S = ∇Π − F�. (2.35)
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Note from (2.33) that Π is harmonic in both Ω and Ωc, and from (2.35) that S and
Π are harmonic conjugates in these regions, so S must be harmonic also. If we take
the vertical component of the curl of (2.35), we find that

∇2S = −∇⊥ · (k̂ × F�) (2.36)

= −∇⊥ · (κ t̂δ(d)) (2.37)

= −κsδ(d), (2.38)

where κs is the derivative of the curvature with respect to arclength.
To summarize, in the subfluid, we seek a harmonic streamfunction that satisfies the

surface stress balance

∇2ψ = 0, z < 0, (2.39)

ψz = S, (2.40)

and |∇ψ | → 0 as z → −∞. The surface stress satisfies

∇2
⊥S = −κsδ(d) (2.41)

and vanishes in the far field. Finally, the boundary of the domain is advected with
the velocity of the subfluid evaluated at the surface:

DΓ

Dt
= U ext + k̂ × ∇⊥ψ

∣∣∣
z=0

on ∂Ω, (2.42)

Equations (2.39)–(2.42) specify the evolution of the domain completely. Moreover,
computing the boundary velocity has been reduced to solving Laplace’s equation twice,
once on the two-dimensional surface and once in the three-dimensional subfluid in
the half-space z < 0.

3. Energy and energy dissipation
In this section we show that in the absence of an external flow (U ext = 0) the ILLSS

model dissipates energy by reducing the arclength of the boundary of the domain.
The length of the boundary L is

L(t) =

∮
∂Ω

ds.

Then,

Lt = −
∮

∂Ω

κ(U · n̂) ds,

where we have used the fact that the boundary of the domain is advected materially
with the surface velocity U evaluated on the boundary of the domain ∂Ω . Since the
curvature κ equals the jump in the surface pressure on the domain boundary, we can
use the definition of the delta function to extend the integral to the entire surface.
Substituting and using the divergence theorem yields

Lt = −
∮

∂Ω

κ(U · n̂) ds

= −
∫ ∫

z=0

U · (κδ(d)n̂) dx dy

= −
∫ ∫

z=0

U · (∇⊥Π − Fs) dx dy. (3.1)
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Note that if we integrate the first term over a circle of radius R, then∫ ∫
r<R

U · ∇⊥Π dx dy =

∫ ∫
r<R

∇⊥ · (ΠU) dx dy

=

∮
r=R

Π(U · n̂) ds

= O(1/R), (3.2)

where the first step employs the incompressibility of the Langmuir layer, and we
have used the fact that the pressure and the velocity are O(1/R) in the far field.
Consequently, this term vanishes as R → ∞.

Rewriting the remaining term in terms of the surface stress, we find

Lt =

∫ ∫
z=0

u · Fs dx dy = −
∫ ∫

z=0

uuz + vvz dx dy.

We now use a standard identity for Stokes flow by extending the surface to a large
closed hemisphere and noting that the velocity vanishes far from the domain. The
divergence theorem yields the standard result (cf. Aris 1990; Lubensky & Goldstein
1996) that

Lt = −1

2

∫ ∫ ∫
z<0

|eij |2 dx dy dz, (3.3)

where eij is the rate-of-strain tensor

eij =
1

2

(
∂ui

∂xj

+
∂ui

∂xj

)
, (3.4)

by which we see that the arclength of the boundary decreases monotonically, unless
the fluid is at rest. The action of the flow is to minimize the length of the boundary
while preserving the area of the domain; the isoperimetric inequality suggests that,
for domains of finite area, Ω will relax to a circle, or possibly the union of multiple
circular domains. If we allow the domain to be infinite, a half-plane or an infinite
strip could also be a (possibly local) energy minimizer.

4. Stability and relaxation to a circular domain
In this section we consider the relaxation of a linear perturbation to the boundary

of a circular domain Ω of radius R. We know from the previous section that a circular
domain is stable. However, rates of relaxation of the various modes are characteristic
and give one possible way of measuring line tension (Mann et al. 1995). We expand
the perturbation in Fourier modes, substitute in the governing equations, and retain
each mode to first order in the perturbation.

We describe the boundary of the domain in polar coordinates as

R(θ, t) = R + εβ(θ, t). (4.1)

Rotational symmetry guarantees that angular Fourier modes will decouple in the
linear stability problem. Moreover, area conservation of the domain requires that the
n = 0 mode vanishes. Consequently, we expand β in the form

β(θ, t) =

∞∑
n=1

[an cos(nθ) + bn sin(nθ)] eλnt (4.2)

and compute to first order in ε.
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Linearizing the curvature operator using standard identities, we find

κ(R) = − 1

R
+ ε

1

R2
(βθθ + β) + O(ε2), (4.3)

κs(R) =
ε

R3
(βθθθ + βθ ) + O(ε2), (4.4)

and thus

κs(R) = ε

∞∑
n=1

[−an sin(nθ) + bn(t) cos(nθ)]
n(1 − n2)

R3
eλnt (4.5)

to first order in ε. We can now solve for the linearized surface-stress streamfunction;
let

S(r, θ, t) = ε
∑
n=1

[an sin(nθ) − bn cos(nθ)]
n(1 − n2)

R3
eλnt sn(r). (4.6)

Substituting into Laplace’s equation (2.41) for the surface stress yields

Lr sn(r) ≡
(

∂2

∂r2
+

1

r

∂

∂r
− n2

)
sn(r) = δ(r − R), (4.7)

where sn must be regular at the origin and vanish in the far field. Note that at leading
order the δ-function forcing can be applied at the unperturbed boundary (R = R).
Solving for sn(r), we find

sn(r) =

{−R/2n(r/R)n, r < R,

−R/2n(R/r)n, r > R.
(4.8)

To solve for the subfluid streamfunction, let

ψ(r, θ, z, t) = −ε

∞∑
n=1

[an sin(nθ) − bn cos(nθ)]eλnt
(1 − n2)

2R2
Pn(r, z), (4.9)

where Pn(r, z) satisfies Laplace’s equation (2.39) in the subfluid:(
Lr +

∂2

∂z2

)
Pn(r, z) = 0, z < 0, (4.10)

∂Pn

∂z
(r, 0) = fn(r) ≡

{
(r/R)n, r < R,

(R/r)n, r > R,
(4.11)

and Pn → 0 for r → ∞ and z → −∞. Once again as we are only retaining linear
perturbations we may evaluate the surface-stress boundary condition for the circular
domain, ignoring the deformation of the boundary.

As solutions to Laplace’s equation in the subfluid take the form Jn(kr)ekz, we can
construct the solution to the problem via a Hankel transform,

Pn(r, z) =

∫ ∞

0

cn(k)Jn(kr)ekz dk, (4.12)

which implies

∂Pn

∂z
(r, 0) =

∫ ∞

0

cn(k)Jn(kr) k dk = fn(r). (4.13)
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Inverting the transform with the identity

δ(k − k′) =

∫ ∞

0

krJn(kr)Jn(k
′r) dr (4.14)

yields

cn(k) =

∫ ∞

0

fn(r)Jn(kr) r dr, (4.15)

or

Pn(r, z) =

∫ ∞

0

∫ ∞

0

fn(r
′)Jn(kr ′)Jn(kr)ekz r ′ dr ′ dk. (4.16)

To complete the problem, we use the kinematic condition to advect the domain
boundary. We linearize around R = R,

Rt = εβt = − 1

R
ψθ (R, θ). (4.17)

Substituting the expressions (4.2) and (4.9) for β and ψ yields

∞∑
n=1

[an cos(nθ) + bn sin(nθ)]λne
λnt

=

∞∑
n=1

[an cos(nθ) + bn sin(nθ)]eλnt
n(1 − n2)

2R3
Pn(R, 0),

from which we deduce

λn =
n(1 − n2)

2R3
Pn(R, 0). (4.18)

However,

Pn(R, 0) =

∫ ∞

0

∫ ∞

0

fn(r
′)Jn(kr ′)Jn(kR) r ′ dr ′ dk

= R

∫ ∞

0

[∫ 1

0

(ρ)n+1Jn(kρ) +

∫ ∞

1

(ρ)−n+1Jn(kρ) dρ

]
Jn(k) dk

= 2nR

∫ ∞

0

[Jn(k)]2
dk

k2

=
2nR

π(n2 − 1
4
)
,

which allows a closed form for the relaxation rates,

λn = − n2(n2 − 1)

πR2
(
n2 − 1

4

) , for n = 1, 2, 3 . . . . (4.19)

This result can also be deduced from Stone & McConnell (1995) as reported in Mann
et al. (1995) where it was used to estimate the line tension from the relaxation rate of
perturbations to a circular domain. Note that λ1 = 0 corresponds to the translation
symmetry of the domain, and λn < 0 for n � 2, as expected, confirming that the
circular domain is stable.
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5. Linear stability of a tether
The length of a tether between the two bola of a deformed domain Ω (see

figure 1) can be orders of magnitude longer than wide. It can thus be reasonably
approximated by a two-dimensional infinite strip in the surface of the subfluid. In this
section we consider the relaxation of linear perturbations of an infinite strip of width
2d . Consider a domain occupying the region −d � y � d . We consider two classes
of linear perturbations: varicose perturbations for which the domain is symmetric
around the line y = 0 and sinuous instabilities for which the perturbations are
antisymmetric. The analysis is analogous to that of the previous section – expanding
the perturbations in Fourier modes and solving to first order in the perturbation.
The growth rates for the sinuous perturbation can be deduced from the results of
DeKoker & McConnell (1996) who analysed stripe patterns in an analogous lipid
system.

For the varicose case, we assume the domain takes the form

|y| < H (x, t) = d + εh(x, t). (5.1)

Translational symmetry guarantees that Fourier modes in x decouple. Consequently,
we expand h(x, t) in the form

h(x, t) =

∫ ∞

−∞
ĥ(k)eikx+λk t dk. (5.2)

We linearize the curvature operator; using standard identities, we find that on the
upper boundary

κ = εhxx + O(ε2), (5.3)

κs = −εhxxx + O(ε2), (5.4)

from which we derive

κs = ε

∫ ∞

−∞
ik3 ĥ(k)eikx+λk t dk, (5.5)

where we have dropped terms of order ε2 and higher. To solve for the linearized
surface-stress streamfunction, let

S(x, y, t) = ε

∫ ∞

−∞
ik3 Ŝ(k, y)eikx+λk t dk. (5.6)

Laplace’s equation (2.41) for the surface stress implies(
∂2

∂y2
− k2

)
Ŝ(k, y) = −[δ(y − d) − δ(y + d)] (5.7)

with |Ŝ(k, y)| → 0 as |y| → ∞. Solving,

Ŝ(k, y) =

⎧⎪⎨
⎪⎩

(
e−|k|y/k

)
sinh(kh), d � y,(

e−|k|d/k
)
sinh(ky), |y| < d,

−
(
e|k|y/k

)
sinh(kh), y � −d.

(5.8)

We now solve for the subfluid streamfunction; let

ψ(x, y, z, t) = ε

∫ ∞

−∞
ik2 P̂ (k, y, z)eikx+λk t dk, (5.9)
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where P̂ (k, y, z) must satisfy Laplace’s equation (2.39) in the subfluid:(
∂2

∂y2
+

∂2

∂z2
− k2

)
P̂ (k, y, z) = 0, z < 0, (5.10)

∂P̂

∂z
(k, y, 0) = f (k, y) ≡

⎧⎪⎨
⎪⎩

e−|k|y sinh(kh), d � y,

e−|k|d sinh(ky), |y| < d,

−e|k|y sinh(kh), y � −d.

(5.11)

and P̂ (k, y, z) vanishes as z → −∞. Note that as we are only retaining linear
perturbations we may evaluate the surface-stress boundary condition at z = ±d ,
ignoring the perturbations to the boundary.

Solutions to Laplace’s equation in the subfluid take the form exp(i�y +
√

k2 + �2z),
so we construct the general solution to the problem:

P̂ (k, y, z) =

∫ ∞

−∞
c(k, �) ei�y+

√
k2+�2z d�. (5.12)

Thus

∂P̂

∂z
(k, y, 0) =

∫ ∞

−∞

√
k2 + �2 c(k, �)ei�y d� = f (k, y). (5.13)

Inverting the Fourier transform yields

c(k, �) =
1

2π
√

k2 + �2

∫ ∞

−∞
f (k, y)e−i�y dy. (5.14)

To complete the problem, we use the kinematic condition to advect the domain
boundary. Linearizing around z = d we find

Ht = εht = −ψx(x, d, 0). (5.15)

Substituting the expressions (5.2) and (5.9) for h and ψ , we find∫ ∞

∞
λkĥ(k)eikx+λk t dk = −

∫ ∞

−∞
k3 P̂ (k, d, 0)eikx+λk t dk, (5.16)

from which we deduce

λk = −k3P̂ (k, d, 0). (5.17)

However

P̂ (k, d, 0) =
1

2π

∫ ∞

−∞

ei�d

√
k2 + �2

∫ ∞

−∞
f (k, y ′)e−i�y ′

dy ′ d�

=

∫ ∞

−∞
f (k, y ′)

[
1

2π

∫ ∞

−∞

e−i�(y ′−d)

√
k2 + �2

d�

]
dy ′

=
1

π

∫ ∞

−∞
f (k, y ′)K0(|k(d − y ′)|) dy ′,

from which we deduce

λk = −k2

π
Iv(|kd|), (5.18)

where

Iv(α) = α

∫ ∞

−∞
F (α, ξ )K0(α|1 − ξ |) dξ (5.19)
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and

F (α, ξ ) ≡

⎧⎨
⎩

e−αξ sinh(α), 1 � ξ,

e−α sinh(αξ ), |ξ | < 1,

−eαξ sinh(α), ξ � −1.

(5.20)

A laborious calculation reduces this to

Iv(α) = 1 − cosh(2α) +

∫ 2α

0

sinh(2α − ζ )K0(ζ ) dζ = 1 − 2αK1(2α). (5.21)

Note for α 
 1, we find

Iv(α) = α2(1 − 2γ − 2 ln(α)) + α4
(

5
4

− γ − ln(α)
)

+ O(α6 lnα),

where γ denotes Euler’s constant. Also, as is clear from figure 3, |Iv(α)| < 1 and as
α → ∞, we see that Iv(α) increases monotonically to 1.

For the sinuous case, we will assume the perturbations to the domain are
antisymmetric at leading order,

−d + εh(x, t) < y < d + εh(x, t). (5.22)

We again expand h(x, t) in the form

h(x, t) =

∫ ∞

−∞
ĥ(k)eikx+λk t dk. (5.23)

A similar calculation yields

λk = −k2

π
Is(|kd|), (5.24)

Is(α) = α

∫ ∞

−∞
G(α, ξ )K0(α|1 − ξ |) dξ, (5.25)

and

G(α, ξ ) ≡

⎧⎨
⎩

e−αξ cosh(α), 1 � ξ,

e−α cosh(αξ ), |ξ | < 1,

eαξ cosh(α), ξ � −1.

(5.26)

We find after some calculation that

Is(α) = 2 − Iv(α) = 1 + 2αK1(2α).

Consequently, for α 
 1, we find

Is(α) = 2 + α2(2γ − 1 + 2 ln(α)) + α4
(
γ − 5

4
+ ln(α)

)
+ O(α6 lnα),

where γ again denotes Euler’s constant. As α increases from 0, Is(α) decreases
monotonically from 2 to 1.

In the paper by DeKoker & McConnell (1996), the drag a sinuous perturbation
feels due to the subfluid is computed, and a simple calculation yields the decay rate
computed above. Moreover, by interpreting these results as a balance between the
drag and the line tension forcing, and noting that the subfluid drag is linear, we can
deduce that averaging a sinuous and varicose perturbation is equivalent to perturbing
the edge of a half-plane sinusoidally. This yields the result

1
2
[Is(α) + Iv(α)] = 1,

where the 1 on the right-hand side arises from the half-plane problem which is
equivalent to the limit of large α in both the sinuous and varicose problems.
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Figure 3. Growth factors for varicose and sinuous instabilities. Perturbations of wavelength
k to a strip of width 2d decay at a rate λ = −(k2/π)I (α) where α = kd and I (α) = Iv(α) for
varicose instabilities and I (α) = Is(α) for sinuous instabilities. We see that all instabilities are
decaying indicating that the strip is stable to linear perturbations.

From the calculations above, we conclude that the tether is linearly stable, with
sinuous perturbations damped more strongly than varicose variations of the same
wavelength. Also, as the wavelength decreases to zero, we discover that the varicose
perturbation decays at a rate λk ∼ −(2/π)k4d2 ln(1/(kd)). It is tempting to assume that
long-wave tether variations will lend themselves to analysis via lubrication theory in a
fashion analogous to the Hele-Shaw problem (Almgren 1996). However, the logarithm
in the long-wave growth rate foreshadows a difficulty: the lubrication theory is in
fact non-local and contains an integral convolution term at leading order. In fact,
it appears (to us) simpler and more productive to analyse the full problem via a
boundary integral method as described in the next section.

6. Boundary integral formulation
Boundary integral formulations of free boundary problems often yield efficient

numerical methods for describing their evolution. We note that for the ILLSS model
the surface-stress streamfunction and in turn the subfluid streamfunction and fluid
velocity are determined solely by the position of the domain boundary. Moreover,
they are determined as a linear response to the forcing associated with the line tension.
Consequently, the problem allows a boundary integral formulation where the velocity
of the boundary of the domain can be determined as an integral over the boundary.

We first derive an integral formulation for the surface-stress streamfunction, which
satisfies the Poisson equation

∇2
⊥S = −κsδ(d) (6.1)

= −
∮

κs(s
′)δ(s ′)δ(d) ds ′. (6.2)

Note that the Green’s function G2D(r) for Laplace’s equation in two dimensions
satisfies

∇2
⊥G2D = δ(x)δ(y), (6.3)
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which yields

G2D(r) =
1

2π
ln r, r =

√
x2 + y2.

As (s, d) are orthogonal coordinates at the boundary of the domain, we can construct
a solution for the surface-stress streamfunction in terms of the Green’s function,

S(x, y) = −
∮

κs(s
′)G2D(|R − Γ (s ′)|) ds ′, R = x ı̂ + yĵ , (6.4)

= − 1

4π

∮
κs(s

′) ln |R − Γ (s ′)|2 ds ′ (6.5)

= − 1

2π

∮
κ(s ′)

[Γ s(s
′)] · [R − Γ (s ′)]

|R − Γ (s ′)|2 ds ′, (6.6)

where the last step is derived via integration by parts.
This can be simplified by introducing a vector, q, in the surface from a point on

the boundary of the domain (Γ ) to an arbitrary point the surface (R),

q(s) = R − Γ (s), q = |q|, q̂ =
q
q

, (6.7)

which allows us to write the solution for the surface-stress streamfunction as

S(x, y) = − 1

2π

∮
κ t̂ · q̂

q
ds, (6.8)

where we have used the fact that Γ s is the unit tangent t̂ .
The subfluid streamfunction ψ(x, y, z) can now be solved for in terms of S(x, y);

we know the solution is harmonic with a Neumann condition at the surface,

∇2ψ = 0, z < 0, (6.9)

ψz = S(x, y), z = 0, (6.10)

and the fluid speed |∇ψ | vanishes as z → −∞.
The associated Green’s function G3D(x, y, z), which satisfies

∇2G3D = 0, z < 0, (6.11)

∂z(G3D) = δ(x)δ(y), z = 0, (6.12)

is easily derived, namely,

G3D(x, y, z) =
1

2π

1√
z2 + r2

, r =
√

x2 + y2,

which in turn implies

ψ(x, y, z) =

∫ ∞

−∞

∫ ∞

−∞
S(x ′, y ′)G3D(x − x ′, y − y ′, z) dx ′ dy ′. (6.13)

It is now straightforward, if algebraically cumbersome, to substitute the expression
for the surface-stress streamfunction into this integral formulation (evaluated at the
surface), and exchange the order of integration to derive the streamfunction evaluated
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at the surface. We see that

ψ(x, y, 0) =

∫ ∞

−∞

∫ ∞

−∞
S(x ′, y ′)G3D(x − x ′, y − y ′, 0) dx ′ dy ′

= − 1

2π

∫ ∞

−∞

∫ ∞

−∞

[∮
κt̂ · q̂

q
ds

]
G3D(x − x ′, y − y ′, 0) dx ′ dy ′

=

∮
κt̂ · K (Γ (s), R) ds,

where

K (R′, R′′) = − 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

R′ − R
|R′ − R|2|R′′ − R| dx dy (6.14)

=
1

2π

R′ − R′′

|R′ − R′′| . (6.15)

The last integral above can be evaluated by changing to polar coordinates with origin
at R′ and with R′′ along the polar axis, evaluating the radial integral on a finite
disk centred at the origin, evaluating the angular integral and then letting the radius
approach infinity. Consequently, we conclude that

ψ(x, y) = − 1

2π

∮
κ t̂ · q̂ ds, q̂ =

R − Γ (s)

|R − Γ (s)| , R = x ı̂ + yĵ . (6.16)

To finish the formulation we must specify the motion of the boundary; from the
kinematic condition (2.42) we know

DΓ

Dt
= (U + U ext)|∂Ω = (k̂ × ∇⊥ψ + U ext)|∂Ω. (6.17)

At this point we turn our attention from the physical calculation to setting up the
numerical calculation of the boundary integral formulation. We first parameterize the
boundary, Γ (p, t), with a parameter p which is 2π-periodic. We then note that as
the boundary is isotropic, we are free to introduce an arbitrary tangential velocity
whose only effect will be to change the parameterization of the boundary (cf. Hou
et al. 1994). Consequently, the tangential component, V, can be chosen arbitrarily
(and in fact will be used to distribute the collocation points evenly on the boundary).
So an equivalent formulation is

Γ t = (U + Uext)n̂ + V t̂, (6.18)

where

Uext = n̂ · U ext, (6.19)

U = n̂ · k̂ × ∇⊥ψ |∂Ω = ψs |∂Ω, (6.20)

and V is arbitrary. It now suffices to know the streamfunction only on the boundary
of the domain; this simplifies our numerical calculations immensely.

In summary, we find that

Γ t = (Ψs + Uext)n̂ + V t̂, (6.21)

where Ψ (s) is the streamfunction restricted to the boundary of the domain,

Ψ (s) = − 1

2π

∮
κ t̂ · Q̂ ds ′, Q̂ =

Γ (s ′) − Γ (s)

|Γ (s ′) − Γ (s)| , (6.22)
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and V can be chosen arbitrarily. Once the externally imposed velocity U ext and the
initial domain boundary location have been specified, the boundary integral equations
(6.21), (6.22) completely determine the evolution of the Langmuir layer.

6.1. Boundary integral numerics

We report on a continuing effort to numerically simulate the boundary integral
equations (6.21), (6.22). Our method is based on the work of Hou et al. (1994)
who recognized the importance of using an intrinsic description of the boundary
which allows an accurate implicit solution for the high-wavenumber modes avoiding
numerical instabilities. Figures 4, 5 illustrate that such a method reproduces the
observed bola dynamics qualitatively; we expect to report a quantitative comparison
elsewhere after we have refined our numerical simulations and experimental technique.

Previously a boundary integral formulation for the Langmuir layer (including
electrostatic forces) was proposed by Lubensky & Goldstein (1996) and implemented
by Heinig et al. (2004); they compute the boundary velocity explicitly, which is

equivalent to computing k̂ × ∇⊥ψ in (6.16), (6.17). Heinig et al. (2004) were able
to qualitatively reproduce many experimental results, although the scheme exhibited
moderate area loss. Moreover, their scheme was explicit and first-order in time which
limits the size of time-steps that can be taken accurately. Here we present a scheme
that is second-order in time, essentially spectrally accurate in space, and semi-implicit
which guarantees stability. Moreover, by using the conservative form of the boundary
integral equations (6.21), (6.22) where the velocity is an exact derivative with respect
to arclength our scheme better conserves the area of the domain.

Following Hou et al. (1994), we represent the boundary with an equal-arclength
discretization; note that this equal-arclength constraint specifies the tangential
velocity. Derivatives are computed pseudo-spectrally (Gottlieb & Orszag 1977;
Trefethen 2000), and the boundary integral is computed using either Romberg
integration or a 16-panel closed Newton–Cotes formula which guarantees high-order
spatial accuracy. Numerically we see that the problem is extremely stiff and explicit
integration methods are highly susceptible to high-wavenumber instabilities. This can
be ameliorated by operator splitting following the ideas of Hou et al. (1994). While
such a splitting is not immediately apparent in the formulation above, the formulation
in Lubensky & Goldstein (1996) and Heinig et al. (2004) can be used to show that
asymptotically the high wavenumbers are governed by a much simpler evolution law,
namely motion by mean curvature. It is straightforward to solve the evolution by
mean curvature implicitly and to high accuracy (cf. Hou et al. 1994). We proceed
by using Strang splitting with the mean-curvature step implemented implicitly and
the external velocity and the boundary integral velocity minus the mean curvature
velocity computed explicitly.

We implemented this algorithm using MATLAB. Numerically, we found that it was
necessary to correct the arclength discretization regularly to correct a slow drift of
the grid points – this was done using spectral interpolation and a Newton–Raphson
iteration. Also, it is necessary to filter the highest wavenumber modes in the boundary
integral (whose numerical accuracy is poor anyway due to the discretization); in
practice we convolute the spectrum with a smooth filter and retain roughly two-thirds
of the spectrum. Details of the numerical implementation can be found in Pugh
(2006).

The specific numerical integration illustrated in figures 4, 5 uses 1024 points and 64
time-steps per unit of time. The domain initially is a circle of radius 3. An external
straining flow U ext = 0.25(x ı̂ − yĵ ) is imposed and the domain is stretched into a
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t = 0

T
im

e

(End of stretching)

Figure 4. A series of snapshots of a numerical evolution of the stretching of a Langmuir
domain computed via a boundary integral method for the inviscid Langmuir layer Stokesian
subfluid Model. The domain is originally a circle of radius 3. At the end of the stretching the
domain is 60 units long. The domain is stretched by a transient straining flow of strength 0.25
for 11.14 units of time; snapshots are separated by 1.59 units of time.

long narrow lozenge of length 60 with an aspect ratio of roughly 144-to-1. As the
domain relaxes it loses convexity with the appearance of two rounded reservoirs at
the tips connected by a narrow tether, creating the classic bola shape observed in the
experiments. Eventually the domain regains convexity, becomes nearly elliptical, and
relaxes towards the circular energy minimizer.

This numerical run took about thirty hours on a GHz speed single-processor
machine. A check on the accuracy of the code is that the area of the domain should
be conserved; during the stretching phase the domain loses roughly 1% of its area;
during the relaxation phase the area is conserved to within 0.1%.

6.2. Computing the line tension

In this section we show how to compute the line tension from the tether relaxation
velocity. Experiments on bola relaxation have been used previously to make order-
of-magnitude estimates of line tensions (Benvegnu & McConnell 1992; Mann et al.
1992, 1995). Benvegnu & McConnell (1992) modelled the bola as a circular disk being
pulled by the line tension associated with the tether. By computing the force exerted
by the line tension and balancing it with the drag on the disk they estimate the line
tension. We summarize their calculation below; note that we have returned to the
original dimensional variables.
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(End of streching)

T
im

e

Figure 5. Tether relaxation. After the straining field is released in figure 4, the domain
assumes the classic bola shape, and eventually relaxes back to an ellipse approaching the
energy-minimizing circular configuration. Here the snapshots are separated by 13.1 units of
time. A movie of this numerical evolution is available with the online version of the paper.

The total horizontal force on the disk, Fline, is easily computed by integrating the
force around one end of the tether. For definiteness, consider the right half of one the
tethers in figure 5 and integrate along a contour C from the midpoint of the bottom
of the tether counter-clockwise to the midpoint of the top of the tether,

Fline =

∫
C
λκ n̂ ds = λ t̂

∣∣top

bottom
= −2λĵ , (6.23)

yielding a force proportional to the line tension in the direction of motion.
The drag force is the product of the bola velocity and the drag coefficient,

Fdrag = CdragVbolaĵ .



216 J. Alexander, A. Bernoff, E. Mann, J. Mann, J. Wintersmith and L. Zou

1.50

1.25

1.00

0.75

0.50

Ebola

0 50 100 150
Time, t

Figure 6. Computing line tension from the tether relaxation. Previous studies have assumed
that the line tension for a relaxing tether can be computed from λ = Ebola4η′VbolaRbola where
Vbola is the bola velocity and Rbola is the tether radius, measured as the maximum half-width
of the bola perpendicular to the tether. Here we plot Ebola for the numerically computed
relaxation in figure 5; the graph starts when the straining flow stops at t = 11.14 and stops
when the domain loses convexity at roughly t = 144.5. Previous studies assumed that Ebola

was unity after the initial relaxation and before the two bolas merge. In fact it slowly increases
from approximately 1 to a maximum of 1.3 in the regime where the ends of the bola are
interacting. These results suggest that Mann et al. (1995) underestimates the line tension by
perhaps 20%.

The drag coefficient was approximated by Benvegnu & McConnell (1992) in two
ways: first as half the drag on a flat disk of radius Rbola in an infinite fluid, which
yields Cdrag = 16

3
η′Rbola (cf. section 339, Lamb 1932); the second model considers the

drag on a solid disk in an inviscid monolayer on an infinite subfluid, which yields
Cdrag = 8η′Rbola (cf. Hughes et al. 1981).

We can now solve for the line tension by equating Fline and Fdrag; this yields

λ = Ebola4η′VbolaRbola, (6.24)

where Ebola = Cdrag/8, which is 2/3 for the first model and unity for the second
model. Typically Rbola is estimated as half the maximum width of the bola measured
perpendicular to the tether axis.

Figure 6 allows us to estimate Ebola from our numerical simulations; as we have
non-dimensionalized the problem we can set the viscosity and line tension to unity to
yield

Ebola =
1

4VbolaRbola

.

We assume that this model should be valid at times after the domain has relaxed to
a bola shape and before the two ends of the bola have begun to interact. In fact we
find that Ebola rapidly increases to slightly above unity as the ends of the bola become
bulbous. It then slowly increases to a maximum of roughly 1.3 where the two ends
of the tether are clearly interacting. This suggests that choosing Cdrag = 8η′Rbola is
nearly correct and that the results of Mann et al. (1995) which use this approximation
underestimate the line tension by perhaps 20%. Our simulations also suggest that
variations in bola length and tether thickness can cause changes in the relaxation rate
of the same order; this effect is explored in Pugh (2006).
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7. Discussion
In this paper we have developed a model of a Langmuir layer with two fluid

phases, one of which is localized into a compact domain. Dimensional analysis
suggests that the dominant balance is between the driving line tension at the
domain boundary and the viscous drag of the subfluid. The governing hydrodynamic
equations have been reduced to a more tractable form: the inviscid Langmuir layer
Stokesian subfluid (ILLSS) model discussed herein reduces the problem to solving for
a horizontal streamfunction which is harmonic in the subfluid, and the surface-stress
streamfunction which is harmonic in the Langmuir layer domains. A further reduction
yields a boundary integral formulation which can be efficiently numerically integrated.
The model conforms well to experimentally observed behaviour of Langmuir layers.

The dissipation of energy suggests that an isolated compact domain will evolve
towards a circular equilibrium which minimizes its perimeter. It is also possible to
compute the relaxation rates of perturbations of a circular domain, which has been
an effective tool for estimating line tensions (Mann et al. 1992, 1995; Lauger et al.
1996). In particular the amplitude of the nth Fourier mode decays as exp(−t/τn)
where τn is the characteristic relaxation time,

τn =
πR2η′

λ

(
n2 − 1

4

)
n2(n2 − 1)

, for n = 1, 2, 3 . . . , (7.1)

where πR2 is the domain area, η′ is the subfluid viscosity and λ is the line tension.
These relaxation rates are deduced from (4.19) and agree with equation (A18) in
Mann et al. (1995) which was based on the earlier work of Stone & McConnell
(1995).

We also consider perturbations of an infinite strip as a model of the narrow
tether seen in the bola configuration. Linear theory indicates that the infinite strip
is stable to perturbations, in agreement with the experimental observation of tethers.
A logical next analytical step is to pursue a nonlinear lubrication theory model of
long-wave perturbations to the tether; this is a strategy that works well, for example,
for analysing rupture in the Hele-Shaw problem (Almgren 1996; Almgren et al. 1996;
Constantin et al. 1993; Dupont et al. 1993; Goldstein et al. 1993). However, our
analysis (not reported here) shows that the lubrication model for this problem is
non-local and contains an integral term which makes the analysis quite complicated.
A simpler alternative is to convert the problem to a boundary integral formulation
and attack it numerically.

In the penultimate section of this paper we derive a boundary integral formulation
for the ILLSS model which is capable of incorporating an external irrotational flow.
Our numerical implementation of a circular patch in a stagnation-point flow shows
that it is stretched into a long and narrow filament. When the stagnation flow is turned
off, the domain first develops circular bulges at its ends, creating the characteristic
bola shape. The bulbous ends then slowly migrate towards each other, eventually
merging and relaxing to a circular domain, the ubiquitous energy minimizer.

Experiments on bola relaxation have been used previously to make order-of-
magnitude estimates of line tensions (Benvegnu & McConnell 1992; Mann et al.
1992, 1995). However these estimates rely on heuristic theories and dimensional
analysis; our numerical simulation suggest that Mann et al. (1995) underestimate line
tensions by perhaps 20% which is similar to the reported experimental uncertainty.

We believe comparisons of the fully nonlinear numerical simulation to the
experimental observations of bola relaxation will allow a more accurate determination
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of the line tension in a variety of systems. Unlike relaxation rates for perturbation
of a circular domain, these measurements are not limited to the regime where linear
theory is applicable. In conclusion, we believe that the ILLSS model effectively models
many experimental observations of Langmuir layers while remaining analytically and
numerically tractable.
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